Homework 08: Cross Validation#

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
import numpy as np
import pandas as pd
import os.path
import subprocess
from sklearn import model_selection, ensemble

Helpers for Getting, Loading and Locating Data

def wget_data(url: str):
    local_path = './tmp_data'
    p = subprocess.Popen(["wget", "-nc", "-P", local_path, url], stderr=subprocess.PIPE, encoding='UTF-8')
    rc = None
    while rc is None:
      line = p.stderr.readline().strip('\n')
      if len(line) > 0:
        print(line)
      rc = p.poll()

def locate_data(name, check_exists=True):
    local_path='./tmp_data'
    path = os.path.join(local_path, name)
    if check_exists and not os.path.exists(path):
        raise RuxntimeError('No such data file: {}'.format(path))
    return path

Problem 1#

The default score function used by sklearn to evaluate how well a regression model predicts data is the coefficient of determination \(R^2\). Implement the function below to calculate \(R^2\):

def calculate_R2(y_data, y_pred):
    """Calculate the coefficient of determination R2 for two arrays.
    
    Parameters
    ----------
    y_data : array
        Array of data values, must have the same shape as y_pred.
    y_pred : array
        Array of predicted values, must have the same shape as y_data.
        
    Returns
    -------
    float
        Calculated coefficient of determination R2.
    """
    assert y_data.shape == y_pred.shape
    # YOUR CODE HERE
    raise NotImplementedError()
# A correct solution should pass the tests below.
gen = np.random.RandomState(seed=123)
N = 100
x = gen.uniform(size=N)
y_pred = 2 * x - 1
y_data = y_pred + gen.normal(scale=0.1, size=N)
assert np.round(calculate_R2(y_data, y_pred), 3) == 0.961
assert np.round(calculate_R2(y_data, -y_pred), 3) == -2.935
assert np.round(calculate_R2(y_pred, y_pred), 3) == 1.000
assert np.round(calculate_R2(y_pred, -y_pred), 3) == -3.000
assert np.round(calculate_R2(y_data, np.full(N, np.mean(y_pred))), 3) == 0.000

Problem 2#

Implement the function below to perform a grid-search cross validation of a random forest regression over the following grid:

  • min_samples_leaf = 1, 10, 20

  • n_estimators = 5, 10, 15

Hint: you will need to ensure reproducible “random” behavior in order to pass all the tests.

def cv_summary(cv):
    """Summarize the results from a GridSearchCV fit.

    Summarize a cross-validation grid search in a pandas DataFrame with the
    following transformations of the full results:
      - Remove all columns with timing measurements.
      - Remove the 'param_' prefix from column names.
      - Remove the '_score' suffix from column names.
      - Round scores to 3 decimal places.

     If the parameter grid is 1D, then this function also plots the test
     and training R2 scores versus the parameter.

    Parameters
    ----------
    cv : sklearn.model_selection.GridSearchCV
        Instance of a GridSearchCV object that has been fit to some data.

    Returns
    -------
    pandas.DataFrame
        Summary table of cross-validation results.
    """
    # Look up the list of parameters used in the grid.
    params = list(cv.cv_results_['params'][0].keys())
    # Index results by the test score rank.
    index = cv.cv_results_['rank_test_score']
    df = pd.DataFrame(cv.cv_results_, index=index).drop(columns=['params', 'rank_test_score'])
    # Remove columns that measure running time.
    df = df.drop(columns=[n for n in df.columns.values if n.endswith('_time')])
    # Remove param_ prefix from column names.
    df = df.rename(lambda n: n[6:] if n.startswith('param_') else n, axis='columns')
    # Remove _score suffix from column names.
    df = df.rename(lambda n: n[:-6] if n.endswith('_score') else n, axis='columns')
    if len(params) == 1:
        # Plot the test and training scores vs the grid parameter when there is only one.
        plt.plot(df[params[0]], df['mean_train'], 'o:', label='train')
        plt.plot(df[params[0]], df['mean_test'], 'o-', label='test')
        plt.legend(fontsize='x-large')
        plt.xlabel('Hyperparameter value')
        plt.ylabel('Score $R^2$')
        plt.ylim(max(-2, np.min(df['mean_test'])), 1)
    return df.sort_index().round(3)
def cross_validate(X, Y, gen):
    """Perform cross validation of a random forest regression.
    
    Parameters
    ----------
    X : array
        Array with shape (N, DX) of N samples with DX features.
    Y : array
        Array with shape (N, DY) of N samples with DY features.
    gen : np.random.RandomState
        Random state to use for reproducible random numbers.
        
    Returns
    -------
    pandas.DataFrame
        Cross-validation summary table produced by cv_summary().
    """
    assert len(X) == len(Y)
    # YOUR CODE HERE
    raise NotImplementedError()
wget_data('https://raw.githubusercontent.com/illinois-ipaml/MachineLearningForPhysics/main/data/spectra_data.hf5')
wget_data('https://raw.githubusercontent.com/illinois-ipaml/MachineLearningForPhysics/main/data/spectra_targets.hf5')
X = pd.read_hdf(locate_data('spectra_data.hf5')).values
Y = pd.read_hdf(locate_data('spectra_targets.hf5')).values
# A correct solution should pass the tests below.
gen = np.random.RandomState(seed=123)
cvs = cross_validate(X, Y, gen)
assert np.all(cvs.columns.values == [
    'min_samples_leaf', 'n_estimators', 'split0_test', 'split1_test', 
    'mean_test', 'std_test', 'split0_train', 'split1_train', 'mean_train', 
    'std_train'])
assert np.all(cvs['min_samples_leaf'].values == [1, 1, 1, 10, 10, 10, 20, 20, 20])
assert np.all(cvs['n_estimators'].values == [15, 10, 5, 15, 10, 5, 15, 10, 5])
assert np.allclose(
    cvs['mean_test'].values,
    [0.961, 0.955, 0.942, 0.896, 0.891, 0.879, 0.496, 0.490, 0.480], atol=1e-3)
assert np.allclose(
    cvs['mean_train'].values,
    [0.993, 0.992, 0.990, 0.909, 0.908, 0.905, 0.512, 0.515, 0.507], atol=1e-3)

Acknowledgments#

  • Initial version: Mark Neubauer

© Copyright 2024